Consider
Statement I: (p∧∼q)∧(∼p∧q) is a fallacy.
Statement II: (p→q)↔(∼q→∼p) is a tautology.
Which is always true, so Statement II is true.
Alternate Solution
Statement I (p∧∼q)∧(∼p∧q)
pq∼p∼qp∧∼q∼p∧q(p∧∼q)∧(∼p∧q)TTFFFF F TFFTTF F FTTFFT F FFTTFF F
Hence, it is a fallacy.
Statement II (p→q)↔(∼q→∼p)
∼q→∼p is contrapositive of p→q. Hence,
(p→q)↔(p→q) will be a tautology