Check commutative for ∗∗ is commutative if
a∗b=b∗aa∗b=|a−b|;b∗a=|b−a|=|a−b|
Since,
a∗b=b∗a∀a,bϵR
∴∗ is commutative.
Check associative for ∗
∗ is associative if
(a∗b)∗c=(a∗b)∗c
(a∗b)∗c=(|a−b|)∗c=||a−b|−c|
a∗(b∗c)=a∗(|b−c|)=|a−|b−c||
Since (a∗b)∗c≠a∗(b∗c)
∗ is not associative.
aob=a
Check commutative for 0
0 is commutative if, a0b=b0a
a0b=aandb0a=b
Since a0b≠b0a
0 is not commutative.
Check associative for 0
0 is associative if
(a0b)0c=a0(b0c)
(a0b)0c=a0c=a
a0(b∗c)=a0b=a
Since, (a0b)0c=a0(b0c)
0 is not associative.
a∗b=|a−b|anda0b=a
0 distributes over ∗
Ifa0(b∗c)=(a0b)∗(a0c),∀a,b,cϵR
0 distributes over ∗
a0(b∗c)=a0|b−c|
(a0b)∗(a0c)=a∗a=|a−a|=|0|=0
Since
a0(b∗c)≠(a0b)∗(a0c)
0 does not distributes over ∗
∗ distributes over 0
Ifa∗(b0c)=(a∗b)0(a∗c),∀a,b,cϵR
∗ distributes over 0.
a∗(b0c)=a∗b=|a−b|
(a∗b)0(a∗c)=|a−b|0|a−c|=|a−b|
Since
a∗(b0c)=(a∗b)0(a∗c),∀a,b,cϵR
∗ distributes over 0.