The correct option is C None of these
z=1−isinθ1+icosθ=(1−isinθ)(1−icosθ)(1+icosθ)(1−icosθ)
=(10sinθcosθ)−i(cosθ+sinθ)(1+cos2θ)
If z is purely real, then
cosθ+sinθ=0
or tanθ=−1\Rightarrow \theta=n\pi -\frac {\pi}{4}, n\epsilon IIfzispurelyimaginary.1- \sin\theta \cos\theta =0or\sin \theta \cos\theta =1,whichisnotpossible.|z|=\left |\dfrac {1-i \sin\theta}{1+ i \cos\theta}\right |=\dfrac {\sqrt {1+ \sin^2\theta}}{\sqrt {1+\cos^2\theta}}If|z|=1,then\cos^2\theta=\sin^2\theta \Rightarrow \tan^2\theta 1\Rightarrow \theta=n\pi \pm \frac {\pi}{4}, n\epsilon IWehave,arg (z)=\tan^{-1}\left (\frac {-(\cos\theta + \sin\theta)}{(1-\sin\theta \cos\theta)}\right )Now,arg(z)=\pi / 4\Rightarrow \dfrac {-(\cos\theta+\sin\theta)}{(1-\sin\theta \cos\theta)}=1\Rightarrow \cos^2\theta+ \sin^2\theta+ 2 \sin\theta \cos\theta=1+\sin^2\theta \cos^2\theta-2 \sin\theta \cos\theta\Rightarrow 1+4 \sin\theta \cos\theta =1+\sin^2\theta \cos^2\theta\Rightarrow \sin^2\theta \cos^2\theta -4 \sin\theta \cos \theta =0\Rightarrow \sin\theta \cos\theta (\sin\theta \cos\theta -4)=0\Rightarrow \sin\theta \cos\theta =0 (\because \sin\theta \cos\theta =4isnotpossible)\Rightarrow \theta=(2n+1)\pior\theta=(4n-1)\pi/2, n\epsilon 1 (\because -cos\theta - sin\theta > 0)$.