wiz-icon
MyQuestionIcon
MyQuestionIcon
1
You visited us 1 times! Enjoying our articles? Unlock Full Access!
Question

Consider the complex numbaers z=(1isinθ)(1+icosθ). If argument of z is π/4, then

A
θ=nπ,nϵI only
No worries! We‘ve got your back. Try BYJU‘S free classes today!
B
θ=(2n+1),nϵI only
No worries! We‘ve got your back. Try BYJU‘S free classes today!
C
Both θ=nπ and θ=(2n+1)π2,nϵI
No worries! We‘ve got your back. Try BYJU‘S free classes today!
D
None of these
Right on! Give the BNAT exam to get a 100% scholarship for BYJUS courses
Open in App
Solution

The correct option is C None of these
z=1isinθ1+icosθ=(1isinθ)(1icosθ)(1+icosθ)(1icosθ)
=(10sinθcosθ)i(cosθ+sinθ)(1+cos2θ)
If z is purely real, then
cosθ+sinθ=0
or tanθ=1\Rightarrow \theta=n\pi -\frac {\pi}{4}, n\epsilon IIfzispurelyimaginary.1- \sin\theta \cos\theta =0or\sin \theta \cos\theta =1,whichisnotpossible.|z|=\left |\dfrac {1-i \sin\theta}{1+ i \cos\theta}\right |=\dfrac {\sqrt {1+ \sin^2\theta}}{\sqrt {1+\cos^2\theta}}If|z|=1,then\cos^2\theta=\sin^2\theta \Rightarrow \tan^2\theta 1\Rightarrow \theta=n\pi \pm \frac {\pi}{4}, n\epsilon IWehave,arg (z)=\tan^{-1}\left (\frac {-(\cos\theta + \sin\theta)}{(1-\sin\theta \cos\theta)}\right )Now,arg(z)=\pi / 4\Rightarrow \dfrac {-(\cos\theta+\sin\theta)}{(1-\sin\theta \cos\theta)}=1\Rightarrow \cos^2\theta+ \sin^2\theta+ 2 \sin\theta \cos\theta=1+\sin^2\theta \cos^2\theta-2 \sin\theta \cos\theta\Rightarrow 1+4 \sin\theta \cos\theta =1+\sin^2\theta \cos^2\theta\Rightarrow \sin^2\theta \cos^2\theta -4 \sin\theta \cos \theta =0\Rightarrow \sin\theta \cos\theta (\sin\theta \cos\theta -4)=0\Rightarrow \sin\theta \cos\theta =0 (\because \sin\theta \cos\theta =4isnotpossible)\Rightarrow \theta=(2n+1)\pior\theta=(4n-1)\pi/2, n\epsilon 1 (\because -cos\theta - sin\theta > 0)$.

flag
Suggest Corrections
thumbs-up
0
Join BYJU'S Learning Program
similar_icon
Related Videos
thumbnail
lock
Introduction
MATHEMATICS
Watch in App
Join BYJU'S Learning Program
CrossIcon