Multiplying and dividing by 1−icosθ
(1−isinθ)(1−icosθ)1+cos2θ
=1−i(cosθ+sinθ)−sin2θ21+cos2(θ)
=1−sin2θ21+cos2(θ)−i(cosθ+sinθ)1+cos2(θ)
If
arg(z) is π4,
then
1−sin2θ2=−(cosθ+sinθ)
2−2sinθcosθ2=−(cosθ+sinθ)
1+(cosθ−sinθ)2=−2(cosθ+sinθ)
θ=(2n−1)π
satisfies, the above equation.