Consider the curve f(x,y)=0 which satisfies the differential equation dydx+1x−y2+4=0 such that y(1)=−1. If f(x,y) represents a conic, then the length of its latus rectum is
Open in App
Solution
dydx+1x−y2+4=0 ⇒dxdy+x=y2−4⇒xey=∫ey(y2−4)dy⇒xey=ey(y2−4)−ey(2y)+ey⋅2+c⇒x=(y2−4−2y+2)+ce−y⇒x=(y−1)2−3+ce−y Curve passes through (1,−1). ⇒1=4−3+ce1 ⇒c=0 ∴(y−1)2=(x+3)