wiz-icon
MyQuestionIcon
MyQuestionIcon
5
You visited us 5 times! Enjoying our articles? Unlock Full Access!
Question

Consider the differential equation y2dx+(x−1y)dy=0. If y (1) =1, then x is given by:

A
42ye1ye
No worries! We‘ve got your back. Try BYJU‘S free classes today!
B
31y+e1ye
No worries! We‘ve got your back. Try BYJU‘S free classes today!
C
1+1ye1ye
Right on! Give the BNAT exam to get a 100% scholarship for BYJUS courses
D
11y+e1ye
No worries! We‘ve got your back. Try BYJU‘S free classes today!
Open in App
Solution

The correct option is C 1+1ye1ye
y2dx+(x1y)dy=0 & y(1)=1
y2dx+xdy=dyy
Multiply both sides by e1y
e1yy2dx+e1yxdy=dyye1y
e1ydx+⎜ ⎜ ⎜ ⎜e1yy2⎟ ⎟ ⎟ ⎟xdy=e1yy3dy
e1y=h(y) & x=g(x)
g(x)=1 & h(y)=e1yy2
h(y)g(x)dx+h(y)g(x)dy=e1yy3dy
Integrating both sides
h(y)g(x)dx+h(y)g(x)dy=e1y(1y)1y2dy
Let 1y=v
h(y)g(x)+c1=euudu dyy2=du
h(y)g(x)+c1=(ueueu)+c2 (using By parts)
e1yx+c1=e1y+1ye1y+c2
[c2c1=c]
e1yx=e1y(1+1y)+c
x=1+1y+ce1y as f(1)=1
1+11+ce11=1
c=1e
Therefore x=1+1ye1ye.

1177435_1196133_ans_4d28da3614d845ce97ea34c3ce556624.jpg

flag
Suggest Corrections
thumbs-up
0
Join BYJU'S Learning Program
similar_icon
Related Videos
thumbnail
lock
Introduction
MATHEMATICS
Watch in App
Join BYJU'S Learning Program
CrossIcon