1
You visited us
1
times! Enjoying our articles?
Unlock Full Access!
Byju's Answer
Standard XII
Mathematics
Differential Equations Definition
Consider the ...
Question
Consider the differential equation
y
2
d
x
+
(
x
−
1
y
)
d
y
=
0.
If y (1) =1, then x is given by:
A
4
−
2
y
−
e
1
y
e
No worries! We‘ve got your back. Try BYJU‘S free classes today!
B
3
−
1
y
+
e
1
y
e
No worries! We‘ve got your back. Try BYJU‘S free classes today!
C
1
+
1
y
−
e
1
y
e
Right on! Give the BNAT exam to get a 100% scholarship for BYJUS courses
D
1
−
1
y
+
e
1
y
e
No worries! We‘ve got your back. Try BYJU‘S free classes today!
Open in App
Solution
The correct option is
C
1
+
1
y
−
e
1
y
e
y
2
d
x
+
(
x
−
1
y
)
d
y
=
0
&
y
(
1
)
=
1
y
2
d
x
+
x
d
y
=
d
y
y
Multiply both sides by
e
−
1
y
e
−
1
y
y
2
d
x
+
e
−
1
y
x
d
y
=
d
y
y
e
−
1
y
e
−
1
y
d
x
+
⎛
⎜ ⎜ ⎜ ⎜
⎝
e
−
1
y
y
2
⎞
⎟ ⎟ ⎟ ⎟
⎠
x
d
y
=
e
−
1
y
y
3
d
y
e
−
1
y
=
h
(
y
)
&
x
=
g
(
x
)
g
′
(
x
)
=
1
&
h
′
(
y
)
=
e
−
1
y
y
2
h
(
y
)
g
′
(
x
)
d
x
+
h
′
(
y
)
g
(
x
)
d
y
=
e
−
1
y
y
3
d
y
Integrating both sides
∫
h
(
y
)
g
′
(
x
)
d
x
+
h
′
(
y
)
g
(
x
)
d
y
=
−
∫
e
−
1
y
(
−
1
y
)
1
y
2
d
y
Let
−
1
y
=
v
⇒
h
(
y
)
g
(
x
)
+
c
1
=
−
∫
e
u
u
d
u
d
y
y
2
=
d
u
⇒
h
(
y
)
g
(
x
)
+
c
1
=
−
(
u
e
u
−
e
u
)
+
c
2
(using By parts)
⇒
e
−
1
y
x
+
c
1
=
e
−
1
y
+
1
y
e
−
1
y
+
c
2
[
c
2
−
c
1
=
c
]
e
−
1
y
x
=
e
−
1
y
(
1
+
1
y
)
+
c
x
=
1
+
1
y
+
c
e
1
y
as
f
(
1
)
=
1
1
+
1
1
+
c
e
1
1
=
1
c
=
−
1
e
Therefore
x
=
1
+
1
y
−
e
1
y
e
.
Suggest Corrections
0
Similar questions
Q.
Consider the differential equation
y
2
d
x
+
(
x
−
1
y
)
d
y
=
0
.
If
y
(
1
)
=
1
, then
x
is given by :
Q.
Consider the differential equation,
y
2
d
x
+
(
x
−
1
y
)
d
y
=
0.
If value of
y
is
1
when
x
=
1
,
then the value of
x
for which
y
=
2
,
is:
Q.
The equation of the curve passing through
(
π
2
4
,
1
)
,
which has a solution of the equation as
y
2
c
o
s
√
x
d
x
−
2
√
x
e
1
y
d
y
=
0
Q.
Consider the differential equation
d
y
d
x
+
y
=
e
x
with y(0) = 1. Then the value of y(1) is
Q.
The solution of the differential equation
d
y
d
x
+
1
=
e
x
+
y
, is
(a) (x + y) e
x
+ y
= 0
(b) (x + C) e
x
+ y
= 0
(c) (x − C) e
x
+ y
= 1
(d) (x − C) e
x
+ y
+ 1 =0
View More
Join BYJU'S Learning Program
Grade/Exam
1st Grade
2nd Grade
3rd Grade
4th Grade
5th Grade
6th grade
7th grade
8th Grade
9th Grade
10th Grade
11th Grade
12th Grade
Submit
Related Videos
Introduction
MATHEMATICS
Watch in App
Explore more
Differential Equations Definition
Standard XII Mathematics
Join BYJU'S Learning Program
Grade/Exam
1st Grade
2nd Grade
3rd Grade
4th Grade
5th Grade
6th grade
7th grade
8th Grade
9th Grade
10th Grade
11th Grade
12th Grade
Submit
AI Tutor
Textbooks
Question Papers
Install app