The correct option is
C f(x) = 0 has one negative real root
We have,
az2+z+1=0 (1)
_________________
⇒ az2+z+1=0 (taking conjugate of both sides)
⇒ ¯az2−z+1=0 (2)
[since z is purely imaginary ¯z=−z]
Eliminating z from (1) and (2) by cross-multiplication rule,
(¯a−a)2+2(a+¯a)=0⇒(¯a−a2)2 + a+¯a2=0
⇒ -(a−¯a2i)2+(a+¯a2i)=0 ⇒ - sin2θ+cosθ=0
⇒ cosθ=sin2θ (3)
Now,
f(x)=x3−3x2+3(1 + cos θ)x+5
f′(x)=3x3−6x+3(1 + cos θ)
Its discriminant is
36−36(1+cosθ)=−36cosθ=−36sin2θ < 0
⇒ f(x) > 0 ∀ x ϵ R
Hence, f(x) is increasing ∀ x ϵ R. Also, f(0) = 5, then f(x) = 0 has one negative root. Now,
cos2θ=cosθ⇒1−2sin2θ=cosθ
⇒ 1−2cosθ=cosθ
⇒ cosθ=1/3
which has four roots for θ ϵ [0,4π].