wiz-icon
MyQuestionIcon
MyQuestionIcon
1
You visited us 1 times! Enjoying our articles? Unlock Full Access!
Question

Consider the experiment of tossing a coin. If the coin shows head, toss it again, but if it shows tail, then throw a die. Find the conditional probability of the event that 'the die shows a number greater than 4' given that 'there is at least one tail'.

Open in App
Solution

The sample space of experiment may be described as
S=(H,H),(H,T),(T,1),(T,2)(T,3)(T,4)(T,5)(T,6)
where (H,H) denotes that both the tosses result into head and (T,i) denote the first toss result into a tail and the number 'i' appeared on the die for i=1,2,3,4,5,6.
Thus, the probabilities assigned to 8 elementary events are 14,14,112,112,112,112,112,112 respectively.
Let F be the event that 'there is atleast one tail' and E be the event 'the die shows a number greater than 4'. Then,
F=(H,T),(T,1),(T,2),(T,3),(T,4),(T,5),(T,6)
E=(T,5),(T,6) and EF=(T,5),(T,6)
Now, P(F)=P((H,T))+P((T,1))+P((T,2))+P((T,3))+P((T,4))+P((T,5))+P((T,6))
=14+112+112+112+112+112+112=34
and P(EF)=P({(T,5)})+P({(T,6)})=112+112=16
Hence, P(E|F)=P(EF)P(F)=1634=29

flag
Suggest Corrections
thumbs-up
0
Join BYJU'S Learning Program
similar_icon
Related Videos
thumbnail
lock
Conditional Probability
MATHEMATICS
Watch in App
Join BYJU'S Learning Program
CrossIcon