Consider the expression 20132+20142+20152+........+n2. Prove that there exists a natural number n>2013 for which one can change a suitable number of plus signs to minus signs in the above expression to make the resulting expression equal 9999.
Given:
20132+20142+20152+........+n2
we have to prove,
There is a natural number n>2013, for which one can change a suitable number of plus signs to minus signs in the above expression to make the resulting expression equal 9999.
Proof:
Since, for any integer k,
−k2+(k+1)2+(k+2)2−(k+3)2=−4.
⇒(−k2+(k+1)2+(k+2)2−(k+3)2)+(−(k+4)2+(k+5)2+(k+6)2−(k+8)2)+.....n( number of times)=−4n
⇒∑nr=1{−(4r+k))2+(4r+k+1)2+(4r+k+2)2−(4r+k+3)2}=−4n---(1)
Now, we need to get the resulting value is 9999.
Since, 20132+20142+20152+20162+20172=9999+4n,n∈Z
⇒9999=20132+20142+20152+20162+20172−4n
⇒9999=20132+20142+20152+20162+20172+∑nr=1{−(4r+k))2+(4r+k+1)2+(4r+k+2)2−(4r+k+3)2} [Since, from (1)]---(2)
Since, n>2013, put k=2014 in (2)
⇒9999=20132+20142+20152+20162+20172−20182+20192+20202−20212+....+(−1)nn2
i.e., The natural number n>2013 for which one can change a suitable number of plus signs to minus signs in the above expression to make the resulting expression equal 9999.
Hence, proved.