Given that ∠AOB=90∘ and ∠ABC=30∘.
We know that the angle subtended by an arc of a circle at the centre is twice the angle subtended by it at any remaining part of the circle.
∴ ∠AOB=2 ∠ACB
i.e., 90∘=2∠ACB
⇒ ∠ACB=45∘
Also, AO=OB.
⟹∠ABO=∠BAO [angles opposite to equal sides are equal] .....(i)
In ΔOAB,
∠OAB+∠ABO+∠BOA=180∘. [angle sum property of a triangle]
⟹∠OAB+∠OAB+90∘=180∘ [from Eq. (i)]
⇒ 2∠OAB=180∘−90∘
⇒ ∠OAB=90∘2=45∘
Using angle sum property in ΔACB, we have
∠ACB+∠CBA+∠CAB=180∘.
∴ 45∘+30∘+∠CAB=180∘
⇒ ∠CAB=180∘−75∘=105∘
But, ∠CAO=∠CAB−∠OAB
=105∘−45∘=60∘.
i.e., ∠CAO=60∘