The correct option is
A Only
L1L2Given lines:
L1:→r=∧3i−∧j+2∧k+λ(2∧i+4∧j−∧k)
L2:→r=∧i−∧j+3∧k+μ(4∧i+2∧j+4∧k)
L3:→r=∧3i+∧2j−2∧k+t(2∧i+∧j+∧2k)
The condition for lines to be on same plane is that their determinant = 0
Lets do it for L1,L2
L1:→r=∧3i−∧j+2∧k+λ(2∧i+4∧j−∧k)
L2:→r=∧i−∧j+3∧k+μ(4∧i+2∧j+4∧k)
In the 3 X 3 determinant, we take direction vectors of two lines and difference of position vector in 3rd .
Δ=∣∣
∣∣24−142420−1∣∣
∣∣=2[−2−0]−4[−4−8]−1[0−4]=−4+48+4=48≠0
Here, lets check L2 and L3
L2:→r=∧i−∧j+3∧k+μ(4∧i+2∧j+4∧k)
L3:→r=∧3i+∧2j−2∧k+t(2∧i+∧j+∧2k)
Δ=∣∣
∣∣424212−2−35∣∣
∣∣=4[5−(−6)]−2[10−(−4)]+4[−6−(−2)]=44−28−16=0
As Δ=0
L2 and L3 are in same plane.
Similarly for
L3:→r=∧3i+∧2j−2∧k+t(2∧i+∧j+∧2k)
L1:→r=∧3i−∧j+2∧k+λ(2∧i+4∧j−∧k)
Δ=∣∣
∣∣21224−103−4∣∣
∣∣=2[−16−(−3)]−1[−8−(0)]+2[6−(0)]=26+8+12=−6
As Δ≠0
L1 and L3 are also not in same plane.