The correct option is A S1 is not valid and S2 is valid
option(b)
S1:{(A∨B∼C),(∼B→(∼A∨C))}⇒B
When A is true, B is false and C is true, then all the premises have truth value true and the conclusion has truth value false.
∴ The argument S1 is not valid.
S2:{∼B→(P↔R),R→∼B,P→∼R}
Indirect proof:
1.∼B→(P↔R)Premise2.R→∼BPremise3.P→∼RPremise4.RNew premise to apply indirect proof5.∼P(3),(4),modus tollesns6.∼B(2),(4),modusponens7.(P↔R)(1),(6),modus ponens8.R→P(7),simplification9.P(4),(8),modus ponens
(5) and (9) contradict each other.
∴ The argument is valid.