Consider the following linear equations ax+by+cz=0 bx+cy+az=0 cx+ay+bz=0
Match the conditions / expressions in Column I with statements in Column II and indicate your answers by darkening the appropriate bubbles in 4 4 matrix given in the ORS.
Open in App
Solution
Let △=∣∣
∣∣abcbcacab∣∣
∣∣
=−12(a+b+c)[(a−b)2+(b−c)2+(c−a)2]
(A) If a+b+c≠0 and a2+b2+c2=ab+bc+ca
⇒△=0 and a=b=c≠0
⇒ the equations represent identical planes.
(B) a+b+c=0 and a2+b2+c2≠ab+bc+ca
⇒△=0
⇒the equations have infinitely many solutions.
ax+by=(a+b)z
bx+cy=(b+c)z
⇒(b2−ac)y=(b2−ac)z⇒y=z
⇒ax+by+cy=0⇒ax=ay⇒x=y=z.
(C) a+b+c≠0 and a2+b2+c2≠ab+bc+ca
⇒△≠0
⇒ the equation represent planes meeting at only one point.
(D) a+b+c=0 and a2+b2+c2=ab+bc+ca
⇒a=b=c The equation represents the whole of three dimensional space