|A|=∣∣
∣∣abcbcacab∣∣
∣∣=−12(a+b+c)[(a−b)2+(b−c)2+(c−a)2]
A) For a+b+c≠0
⇒[(a−b)2+(b−c)2+(c−a)2]=0
⇒a=b=c≠0
And the given equation represents three identical planes x+y+z=0
B) For |A|=0
⇒ the solution of equation is not unique
ax+by+cz=0⇒by+cz=(b+c)x and cy+az=(c+a)x
⇒(b+c)y+(c+a)z=(b+c)x+(c+a)x⇒x=y=z
C) |A|≠0, equation have a unique solution x=y=z=0 and three planes meet at a point.
D) ⇒a=b=c=0; x,y,z can take any values and hence the given equation represent the whole of three dimensional plane.