C denotes the common elements (natural numbers) in A and B.
8(log4(x))3+4log√2(x4)=20+13(logx2)2
⇒8(log4x)3+4log√2(x4)−20−13(log2x)2=0 ; x≠1
⇒8×(12)3(log2x)3+4×2×4log2x−13(log2x)2−20=0
⇒(log2x)3−13(log2x)2+32log2x−20=0
Let log2x=t
Then t3−13t2+32t−20=0
By trial and error method, we find that t=1 is a root.
Applying synthetic division
t=11−1332−2001−12201−12200
⇒t3−13t2+32t−20=(t−1)(t2−12t+20)=0
⇒(t−1)(t−2)(t−10)=0
⇒t=1,2,10
⇒x=21,22,210=2,4,1024
∴C={2,4,1024}
(x−2)2(15x2−56x+17)<0
⇒15x2−56x+17<0 ;x≠2
⇒15x2−5x−51x+17<0
⇒(3x−1)(5x−17)<0
⇒(x−13)(x−175)<0
⇒x∈(13,175)−{2}
∴D={1,3}
∴n(C×D)=n(C)×n(D)=3×2=6