Consider the function f:(-∞,∞)→(-∞,∞) defined byf(x)=[x2-ax+1][x2+ax+1];0<a<2. Which of the following is true
(2+a)2f''(1)+(2–a)2f''(-1)=0
(2–a)2f''(1)–(2+a)2f''(-1)=0
f'(1)f'(-1)=(2–a)2
f'(1)f'(-1)=-(2+a)2
Explanation of the correct option :
Step1. Given function :
f(x)=[x2-ax+1][x2+ax+1];0<a<2
Discriminant of denominator a2–4<0
Denominator ≠0,∀x∈R
Step 2. Differentiate with respect to x :
f'(x)=[(x2+ax+1)(-2a)+2ax(2x+a)][x2+ax+1]2=[2ax2–2a][x2+ax+1]2=[2a(x2–1)][x2+ax+1]2f'(1)=f'(-1)=0f''(x)=[2a(x2+ax+1)2(2x)–2a(x2–1)2(x2+ax+1)(2x+a)](x2+ax+1)4f''(1)=2a[2(2+a)](2+a)3=4a(2+a)2f''(-1)=-4a(2-a)2f''(1)(2+a)2+f''(-1)(2–a)2=0
Hence, the correct option is A.