The correct option is A g(x) is negative on (−∞,0) and positive on (0,∞)
(x2+ax+1)f(x)=x2−ax+1a
Differentiating we obtain (2x+a)f(x)+(x2+ax+1)f′(x)=2x−a(i)
Putting x=1 and noting that f(1)=2−a2+a, we obtain
(2+a)f(1)+(2+a)f′(1)=2−a⇒f′(1)=0
Differentiating (i) again (ii)
2f(x)+(2x+a)f′(x)+(2x+a)f′(x)+(x2+ax+1)f′′(x)=2
Putting x=1, we have 2⋅2−a2+a+(2+a)f′′(1)=2
⇒f′′(1)=4a(2+a)2
Putting
x=−1 in (i) and noting that f(−1)=2+a2−a(−2+a)f(−1)+(2−a)f′(−1)=−(2+a)⇒f′(−1)=0
Putting x=−1 in (ii), we obtain f′′(−1)=−4a(2−a)2
so (2+a)2f′′(1)+(2−a)2f′(−1)=0
(i)⇒f′(x)=1x2+ax+1
[(2x−a)−(2x+a)×x2−ax+1x2+ax+1]=2a(x2−1)(x2+ax+1)2
So
f′(x)<0 if x∈(−1,1) and f′(x)>0 for x∈(−∞,−1)∪(1,∞) i.e. f increases in(∞,−1)∪(1,∞)
and decreases on (−1,1)
g′(x)=f′(ex)ex1+e2x<0 if f′(ex)<0
But
f′(ex)<0 if ex∈(−1,1) For x>0ex>1 but for x<0,0<ex<1 Thus f′(ex)<0 if x∈(−∞,0)
and is positive for x∈(0,∞)