Consider the function, f(x)={x{x}+1,2−{x},0≤x<11≤x≤2 where {x} denotes the fractional part of x. Find incorrect statements.
Let f(x)=[x]+√x−[x], where [x] denotes the greatest integer function. Then
If [.] denotes greatest integer function and f(x) = [x] {sinπ[x+1]+sinπ[x+1]1+[x]}, then