Consider the function f : R → R, defined as ⎧⎪ ⎪ ⎪ ⎪ ⎪ ⎪⎨⎪ ⎪ ⎪ ⎪ ⎪ ⎪⎩x2−x+3,xϵ(−∞,3)∩Qx+a,xϵ(−∞,2)−Q2x+1,xϵ(2,3)−Q9 tan(π x12),xϵ[3,6]
If f(x) is continuous at x = 2 then the value of a is
3
Consider the function f : R → R, defined as f(x) = ⎧⎪ ⎪ ⎪ ⎪ ⎪ ⎪⎨⎪ ⎪ ⎪ ⎪ ⎪ ⎪⎩x2−x+3,xϵ(−∞,3)∩Qx+a,xϵ(−∞,2)−Q2x+1,xϵ(2,3)−Q9 tan(π x12),xϵ[3,6]
f(2+)=22+1=5
through irrational
f(2−)=2+a
through rational
f(2) = 4 - 2 + 3 = 5
Hence for continuity at x = 2
2 + a = 5 ⇒ a = 3.
At x=3For x=3+; f(x)=9tanπx12⇒f(3+)=9tan3π12=9f′(x)=9π12sec2πx12⇒f′(3+)=9π12sec23π12=3π2≈4.71For x=3−; f(x)={x2−x+3; xϵQ2x+1; xϵR−Q⇒f(3−)={9; xϵQ9; xϵR−Qf′(x)={2x−1; xϵQ2xln2; xϵR−Q⇒f′(3−)={5; x∈Q8ln2; x∈R−Q≈{5; xϵQ5.54; xϵR−Q
Therefore, continuous but not differentiable at x=3.