Consider the function f(x)=2x3−3x2 in the domain [−1,2]. The global minimum of f(x) is
-5
Open in App
Solution
The correct option is A -5 f(x)=2x3−3x2 in xϵ[−1,2] f′(x)=6x2−6x=0 (for maxima or minima) ⇒x=0 or 1
Values of f(x) at critical points: f(0)=0 f(1)=2−3=−1
Values of f(x) at boundaries: f(−1)=−2−3=−5 f(2)=16−12=4
So Global minimum value −5.