Consider the function f(x)=⎧⎪⎨⎪⎩P(x)sin(x−2),x≠27,x=2, where P(x) is polynomial such that P′′(x) is always a constant and P(3)=9. If f(x) is continuous at x=2, then P(5) is equal to
Open in App
Solution
P(x)=k(x−2)(x−b) limx→2f(x)=7 ⇒limx→2k(x−2)(x−b)sin(x−2)=7 ⇒limx→2k(x−b)=7 (∵limx→0sinxx=1) ⇒k(2−b)=7⋯(1)
and P(3)=k(3−2)(3−b)=9 ⇒k(3−b)=9⋯(2)
From (1) and (2) 2−b3−b=79 ⇒18−9b=21−7b ⇒−2b=3 ⇒b=−32
and k(2−b)=7 ⇒k(2+32)=7 ⇒k=2 ∴P(x)=2(x−2)(x+32) ⇒P(5)=3×13 ∴P(5)=39