The correct option is
D e1eLet y=f(x)=(1x)2x2
Taking natural Logaritm on both sides, we have
lny=−2x2lnx
Now, differentiating both sides wrt x, we have 1ydydx=−4xlnx−2x
⟹dydx=(−4xlnx−2x)(1x)2x2=0⟹(−4xlnx−2x)=0⟹x=e−0.5
Again differentiating wrt x, we have
d2ydx2=(−4xlnx−2x)2(1x)2x2+(−4lnx−6)
at e−0.5, d2ydx2=(2e−0.5−2e−0.5)2(e0.5)2e−1+(2−6)=−4<0
Hence, there is a maxima at x=e−0.5.
Now, the maximum value of y=√e2e−1=e1e.
This is he required solution.