consider the function f(x)=⎧⎪⎨⎪⎩a+bx,x<14, x=1b−ax, x>1 If limx→1 f(x)=f(1), then the values of a and b are
a = 3, b = 1
a = 1, b = 3
a = 0, b = 4
a = 4, b = 0
Given limx→1 f(x)=f(1)⇒limx→1− f(x)=f(1) & limx→1+ f(x)=f(1)⇒a+b=4 and b−a=4⇒a=0, b=4