Consider the function g(x)=⎧⎪ ⎪ ⎪⎨⎪ ⎪ ⎪⎩1+ax+xaxlnaaxx2x<02xax−xln2−xlna−1x2x>0. where a>0.Find the value of a & g(0) so that the function g(x) is continuous at x=0
let g(x) be a function satisfying g(0)=2, g(1)=3, g(x+2)=2g(x) - g(x+1), then find out g(5)
Suppose f(x) and g(x) are two continuous functions defined for 0≤x≤1. Given f(x)=∫10ex+t.f(t) dt and g(x)=∫10ex+t.g(t) dt+x. The value of g(0)-f(0) equals