Consider the functions defined implicitly by the equation y3−3y+x=0 on various intervals in the real line. If xϵ(−∞,−2)∪(2,∞), the equation implicitly defines a unique real valued differentiable function y=f(x). If xϵ(−2,−2) the equation implicitly defines a unique real valued differentiable function y=g(x) satisfying g=g(0)=0.If f(−10√2)=2√2 then f′′(−10√2)=