Consider the functions defined implicitly by the equation y3−3y+x=0 on various intervals in the real line. If x∈(−∞,−2)∪(2,∞), the equation implicitly defines a unique real valued differentiable function y=f(x). If x∈(−2,2), the equation implicitly defines a unique real valued differentiable function y=g(x) satisfying g(0)=0.
∫1−lg′(x)dx=