wiz-icon
MyQuestionIcon
MyQuestionIcon
1
You visited us 1 times! Enjoying our articles? Unlock Full Access!
Question

Consider the integral I=10π0cos6x.cos7x.cos8x.cos9x1+e2sin34xdx
If I=c.π40cos6x.cos8x.cos2xdx then 'c' equals

A
5
Right on! Give the BNAT exam to get a 100% scholarship for BYJUS courses
B
10
No worries! We‘ve got your back. Try BYJU‘S free classes today!
C
20
No worries! We‘ve got your back. Try BYJU‘S free classes today!
D
52
No worries! We‘ve got your back. Try BYJU‘S free classes today!
Open in App
Solution

The correct option is A 5
I=10π0cos6x.cos7x.cos8x.cos9x1+e2sin34xdx(1)I=10π0cos6x.cos7x.cos8x.cos9x1+e2sin34xdx (using a0f(x)=a0f(ax))I=10π0e2sin34x(cos6x.cos7x.cos8x.cos9x)1+e2sin34xdx (2)Add (1)+(2)2I=10π0cos6x.cos7x.cos8x.cos9xdx
Let f(x)=cos6x.cos7x.cos8x.cos9x

f(x) repeats after π interval2I=52π0f(s)dx;againf(2ax)=f(x)2I=10π0f(x)dx;againf(πx)=f(x)2I=20π20f(x)dxI=10π20f(x)dx I=10π20cos6x.cos7x.cos8x.cos9xdx(3)I=10π20cos(3π6x)cos(7π27x)cos(4x8x)cos(9π29x)dxI=10π20cos6x.sin7x.cos8x.sin9xdx(4)
(3)+(4)2I=10π20cos6x.cos8x[cos7x.cox9x+sin7x.sin9x]dx2I=10π20cos6x.cos8x.cos2xdxI=5π20cos6x.cos8x.cos2xdx

flag
Suggest Corrections
thumbs-up
3
Join BYJU'S Learning Program
similar_icon
Related Videos
thumbnail
lock
Property 6
MATHEMATICS
Watch in App
Join BYJU'S Learning Program
CrossIcon