Consider the integral I=∫10π0cos6x.cos7x.cos8x.cos9x1+e2sin34xdx If I=c.∫π40cos6x.cos8x.cos2xdx then 'c' equals
A
5
Right on! Give the BNAT exam to get a 100% scholarship for BYJUS courses
B
10
No worries! We‘ve got your back. Try BYJU‘S free classes today!
C
20
No worries! We‘ve got your back. Try BYJU‘S free classes today!
D
52
No worries! We‘ve got your back. Try BYJU‘S free classes today!
Open in App
Solution
The correct option is A 5 I=∫10π0cos6x.cos7x.cos8x.cos9x1+e2sin34xdx…(1)I=∫10π0cos6x.cos7x.cos8x.cos9x1+e−2sin34xdx(using ∫a0f(x)=∫a0f(a−x))I=∫10π0e2sin34x(cos6x.cos7x.cos8x.cos9x)1+e2sin34xdx…(2)Add (1)+(2)2I=∫10π0cos6x.cos7x.cos8x.cos9xdx Let f(x)=cos6x.cos7x.cos8x.cos9x
f(x) repeats after π interval2I=5∫2π0f(s)dx;againf(2a−x)=f(x)2I=10∫π0f(x)dx;againf(π−x)=f(x)2I=20∫π20f(x)dx⇒I=10∫π20f(x)dx∴I=10∫π20cos6x.cos7x.cos8x.cos9xdx…(3)I=10∫π20cos(3π−6x)cos(7π2−7x)cos(4x−8x)cos(9π2−9x)dxI=10∫π20cos6x.sin7x.cos8x.sin9xdx…(4) (3)+(4)2I=10∫π20cos6x.cos8x[cos7x.cox9x+sin7x.sin9x]dx2I=10∫π20cos6x.cos8x.cos2xdxI=5∫π20cos6x.cos8x.cos2xdx