When 0<x<1,
x2<x
⇒ex2<ex
⇒e−x2>e−xMultiplying both sides by cos2x we get
e−x2cos2x>e−xcos2x
⇒∫10e−x2cos2xdx>∫10e−xcos2xdx
⇒I2>I1Similarly, since 0<cos2x<1⇒1ex2>cos2xex2⇒I3>I2⇒I3>I2>I1And ex22<ex2⇒1ex22>1ex2⇒I4>I3⇒I4>I3>I2>I1
Consider the integrals I1=∫10e−xcos2xdx,I2=∫10e−x2cos2xdx,I3=∫10e−xdx and I4=∫10e−(1/2)x2dx. The greatest of these integrals is