wiz-icon
MyQuestionIcon
MyQuestionIcon
2
You visited us 2 times! Enjoying our articles? Unlock Full Access!
Question

Consider the LCR circuit shown in Fig. Find the net current i and the phase of i. Show that i=VZ. Find the impedance Z for this circuit.
1223913_23dd0a00e1924d189b4976d38a8b26ed.png

Open in App
Solution

Total current i from the source Vmsinωt is divided at B in two part, i1 through capacitor and inductor and part i2 through resistance.
Potential across R= Potential of source
P.D. across R=Vmsinωt
i2R=Vmsinωt
i2=VmsinωtR....(I)
q1 is charge on the capacitor at any time t, then for series combination of C,L applying Kirchhoff's voltage law in loop ABEFA.
VC+VL=VMsinωt
q1C+Ldi1dt=Vmsinωt
q1C+Ld2q1dt2=Vmsinωt....II
Let q1=qmsin(ωt+ϕ)....III
i1=dq1dt=qmωcos(ωt+ϕ)...IV
d2q1dt2=qmω2sin(ωt+ϕ)...V
Substitute the values of equations (III) and (V) in equation (II)
qmsin(ωt+ϕ)CLqmω2sin(ωt+ϕ)=Vmsinωt
qmsin(ωt+ϕ)[1CLω2]=Vmsinωt
at ϕ=0,
qmsin(ωt+ϕ)[1CLω2]=Vmsinωt
qm[1CLω2]sinωt=Vmsinωt
qm[1CLω2]=Vm
qm=Vmω[1CωLω]....(VI)
Applying Kirchhoff's junction rule as junction B,i=i1+i1 using relation I,IV
i=VmsinωtR+qmωcos(ωt+ϕ)
Now using relation VI for qm and at ϕ=0
i=⎢ ⎢ ⎢ ⎢VmsinωtR+Vmωcosωtω[1ωCωL]⎥ ⎥ ⎥ ⎥
i=VmRsinωt+Vm(1ωCωL)cosωt
Let
A=Vmr=Ccosϕ....(VII)
B=Vm1ωCωL=Ccosϕ....(VIII)
i=Ccosϕsinωt+Csinϕ.cosωt
=C[cosϕsinωt+sinϕcosωt]
i=Csin(ωt+ϕ)
Squaring and adding (VII), (VIII)
A2+B2=C2cos2ϕ+C2sin2ϕ
=C2[cos2ϕ+sin2ϕ)
A2+B2=C2
or C=A2+B2
ϕ=tan1BA=tan1Vm1ωCωLVmR
tanϕ=R(1ωCωL)
C2=A2+B2=V2mR2+V2m(1ωCωL)2
C=⎢ ⎢ ⎢ ⎢ ⎢V2mR2+V2m(1ωCωL)2⎥ ⎥ ⎥ ⎥ ⎥12
i=⎢ ⎢ ⎢ ⎢ ⎢V2mR2+V2m(1ωCωL)2⎥ ⎥ ⎥ ⎥ ⎥2sin(ωt+ϕ)
i=Vm⎢ ⎢ ⎢ ⎢ ⎢1R2+1(1ωCωL)2⎥ ⎥ ⎥ ⎥ ⎥12sin(ωt+ϕ)....(IX)
And ϕ=tan1R(1ωCωL)
I=VR or i=VZ
For ac i=VZsin(ωt+ϕ)....(X)
Comparing (IX) and (X)
So, 1Z=⎢ ⎢ ⎢ ⎢ ⎢1R2+1(1ωCωL)2⎥ ⎥ ⎥ ⎥ ⎥12
This is the impedance Z for the circuit.
1681874_1223913_ans_d35d4500235c4c92b4a7e8b2afb2bc8c.png

flag
Suggest Corrections
thumbs-up
0
Join BYJU'S Learning Program
similar_icon
Related Videos
thumbnail
lock
Electric Potential and Potential Difference
PHYSICS
Watch in App
Join BYJU'S Learning Program
CrossIcon