Consider the LCR circuit shown in Fig. Find the net current i and the phase of i. Show that i=VZ. Find the impedance Z for this circuit.
Open in App
Solution
Total current i from the source Vmsinωt is divided at B in two part, i1 through capacitor and inductor and part i2 through resistance. Potential across R= Potential of source P.D. across R=Vmsinωt i2R=Vmsinωt i2=VmsinωtR....(I) q1 is charge on the capacitor at any time t, then for series combination of C,L applying Kirchhoff's voltage law in loop ABEFA. VC+VL=VMsinωt q1C+Ldi1dt=Vmsinωt q1C+Ld2q1dt2=Vmsinωt....II Let q1=qmsin(ωt+ϕ)....III i1=dq1dt=qmωcos(ωt+ϕ)...IV d2q1dt2=−qmω2sin(ωt+ϕ)...V Substitute the values of equations (III) and (V) in equation (II) qmsin(ωt+ϕ)C−Lqmω2sin(ωt+ϕ)=Vmsinωt qmsin(ωt+ϕ)[1C−Lω2]=Vmsinωt at ϕ=0, qmsin(ωt+ϕ)[1C−Lω2]=Vmsinωt qm[1C−Lω2]sinωt=Vmsinωt qm[1C−Lω2]=Vm qm=Vmω[1Cω−Lω]....(VI) Applying Kirchhoff's junction rule as junction B,i=i1+i1 using relation I,IV i=VmsinωtR+qmωcos(ωt+ϕ) Now using relation VI for qm and at ϕ=0 i=⎡⎢
⎢
⎢
⎢⎣VmsinωtR+Vmωcosωtω[1ωC−ωL]⎤⎥
⎥
⎥
⎥⎦ i=VmRsinωt+Vm(1ωC−ωL)cosωt Let A=Vmr=Ccosϕ....(VII) B=Vm1ωC−ωL=Ccosϕ....(VIII) i=Ccosϕsinωt+Csinϕ.cosωt =C[cosϕsinωt+sinϕcosωt] i=Csin(ωt+ϕ) Squaring and adding (VII), (VIII) A2+B2=C2cos2ϕ+C2sin2ϕ =C2[cos2ϕ+sin2ϕ) A2+B2=C2 or C=√A2+B2 ϕ=tan−1BA=tan−1Vm1ωC−ωLVmR ∴tanϕ=R(1ωC−ωL) ∵C2=A2+B2=V2mR2+V2m(1ωC−ωL)2 C=⎡⎢
⎢
⎢
⎢
⎢⎣V2mR2+V2m(1ωC−ωL)2⎤⎥
⎥
⎥
⎥
⎥⎦12 ∴i=⎡⎢
⎢
⎢
⎢
⎢⎣V2mR2+V2m(1ωC−ωL)2⎤⎥
⎥
⎥
⎥
⎥⎦2sin(ωt+ϕ) i=Vm⎡⎢
⎢
⎢
⎢
⎢⎣1R2+1(1ωC−ωL)2⎤⎥
⎥
⎥
⎥
⎥⎦12sin(ωt+ϕ)....(IX) And ϕ=tan−1R(1ωC−ωL) ∵I=VR or i=VZ For ac i=VZsin(ωt+ϕ)....(X) Comparing (IX) and (X) So, 1Z=⎡⎢
⎢
⎢
⎢
⎢⎣1R2+1(1ωC−ωL)2⎤⎥
⎥
⎥
⎥
⎥⎦12 This is the impedance Z for the circuit.