wiz-icon
MyQuestionIcon
MyQuestionIcon
1
You visited us 1 times! Enjoying our articles? Unlock Full Access!
Question

Consider the LCR circuit shown in figure.
Find the net current i and the phase of i.
Show that i=Wz. Find the impendance Z for this circuit.


Open in App
Solution

Given,

Current in resistor branch (R)
i1=vm sin ω tR
Let charge flowing through capacitor and inductor at any time (t),

q2=qm sin(ω t+ϕ)

Applying loop rule in the circuit containing capacitor and inductor,

VC+VL=vm sin ω t

q2C+Ldi2dt=vm sin ω t

q2c+Ldq22dt2=vm sin ω t...(i)

Putting value of q2 in (i)
qm(1CLω2)sin (ω t+ϕ)=vm sin ω t

If ϕ=0

qm=vm1C=Lω2
1Cω2L>0

Current i1 and i2 will be,
i1=vm sin ω tR
i2=dq2dt=ω qmcos(ω t+ϕ)

Thus
i1 and i2 will be out of phase at ϕ=0
Let us assume 1Cω2 L>0
i2=ω qm com(ω t)=ω,vm(Lω1Cω)cos ω t

Then,
i1+i2=vmR sin ω t+vmLω1Cωcos ω t

Let Acosϕ=vmR and A sinϕ=vmL ω1Cω

A cos ϕ sin ω t+A sin ϕ cos ω t
=A sin(ω t+ϕ)

(A cos ϕ)2+(A sin ϕ)2=A

Therefore,
i1+i2⎢ ⎢ ⎢ ⎢ ⎢v2mR2+vm2[ω L1ω C]2⎥ ⎥ ⎥ ⎥ ⎥ sin (ω t+ϕ)

ϕ=tan1(RXLXC)
Impendance,
Z=Vi=(vm sin ω t)⎢ ⎢ ⎢ ⎢ ⎢vm2R2+vm2[ω L1ω L]2⎥ ⎥ ⎥ ⎥ ⎥12sin (ω t+ϕ)

1Z={1R2+1(Lω1/ω C)2}12

Final Answer:
1Z={1R2+1(Lω1/ω C)2}12

flag
Suggest Corrections
thumbs-up
1
Join BYJU'S Learning Program
Join BYJU'S Learning Program
CrossIcon