Locus C,
∣∣∣x√2+y−1√3∣∣∣∣∣∣x√2−y+1√3∣∣∣=λ2
⇒|2x2−(y−1)2|=3λ2
C cuts y−1=2x at R(x1,y1) and S(x2,y2).
So,
|2x2−(2x)2|=3λ2
⇒x=±λ√32
∴R(λ√32,1+λ√6) and S(−λ√32,1−λ√6)
Distance between R and S is √270
⇒√(λ√6)2+(2λ√6)2=√270
∴λ2=9
Now, the curve C is
⇒|2x2−(y−1)2|=27 ⋯(1)
Mid-point of RS is (0, 1) and perpendicular bisector is
y=−12x+1 ⋯(2)
From (1) and (2), we have
7x22=27⇒x=±6√37
∴R′(6√37,1−3√37) and S′(−6√37,1+3√37)
D=(R′S′)2=(12√37)2+(6√37)2
⇒D=37×180=5407
∴D≈77.14