1+log5(x2+1)≥log5(ax2+4x+a)
⇒log55(x2+1)≥log5(ax2+4x+a) ...(1)
Now, log5(ax2+4x+a) is defined when
ax2+4x+a>0
⇒D<0 (assuming a≠0)
⇒16−4a2<0
⇒a2−4>0
⇒a∈(−∞,−2)∪(2,∞) ...(2)
From equation (1),
5(x2+1)≥ax2+4x+a
⇒(5−a)x2−4x+(5−a)≥0
⇒D≤0 (assuming a≠5)
⇒16−4(a−5)2≤0
⇒a2−10a+21≥0
⇒(a−7)(a−3)≥0
⇒a∈(−∞,3]∪[7,∞) ...(3)
From equation (2) and (3),
a∈(−∞,−2)∪(2,3]∪[7,∞)
So, a cannot take the values −2,−1,0,1,2,4,5,6