The correct option is C −xy
Given : x=a(1−t2)1+t2andy=2at1+t2
First consider x=a(1−t2)1+t2
Diferentiating w.r.t ′t′
dxdt=a⎡⎣(1+t2)(−2t)−(1−t2)(2t)(1+t2)2⎤⎦
=−2at⎡⎣(1+t2+1−t2)(1+t2)2⎤⎦=−4at(1+t2)2→(1)
secondly y=2at1+t2
⇒dydt=2a⎡⎣(1+t2.1)−t(2t)(1+t2)2⎤⎦→(2)
divide (2)÷(1)
dydtdxdt=2a⎡⎣(1+t2.1)−t(2t)(1+t2)2⎤⎦−4at(1+t2)2
=−1[1+t2−2t2]−4tdydx=−1−t22t→(3)
Given : x=a(1−t2)1+t2andy=2at1+t2
yx=2at1+t2a(1−t2)1+t2
yx=2t1−t2→(4)
Therefor substitute equation (4) in (3)
dydx=−xy
Hence option (4) is the correct answer.