Consider the point A=(3,4) B=(7,13)
PointA(3,4)andB(7,13),liney=xletpointA′theimageofAiny=xthen,PA=PA′ifPA′+PBisminimum,i.e,ifP,A′,Barecollinearslopeofliney=xis1eqnofline⊥rtoy=xandpassingthrough(3,4)willbe(y−4x−3)=−1ory=−x+7forMy=−x+7orx=−x+7orx=(72)then(a+32)=(72)ora=4(b+42)=(72)orb=3∴A′is(4,3)nowco−ordinatesofPis(x,x)asP,A′,Barecollinearhenceslopewillbesameor(13−x7−x)=(13−37−4)or(13−x)×3=10(7−x)or39−3x=70−10xor7x=31∴x=(317)henceP=((317),(317))