(a) P(x)=x2−6x+9
⇒ P(3)=32−6(3)+9=9−18+9=0
(b) P(x)=x2−6x+9=x2−6x+9=−2×3×x+32=(x−3)2, which is a perfect square, therefore the number will always be positive
Hence, the value of this polynomial cannot be a negative number.
(c) P(a)=a2−6a+9
P(b)=b2−6b+9
P(a)+P(b)
⇒a2−6a+9=b2−6b+9
⇒a2−b2−6a+6b=0
⇒(a2−b2)−6(a−b)=0
⇒(a−b)(a+b)−6(a−b)=0
⇒(a−b)(a+b−6)=0
⇒(a−b)=0⇒a=b (Not possible)
a+b=6
There can be many numbers as long it satisfies a+b=6
For example, a=1,b=5