Consider the power series ∞∑n=1xnn⋅6n then find the radius of the convergence.
Given series is ∞∑n=1xnn.6n
Using the ratio test
∣∣∣an+1an∣∣∣=∣∣ ∣ ∣ ∣ ∣∣xn+1(n+1)6n+1xnn.6n∣∣ ∣ ∣ ∣ ∣∣
∣∣∣an+1an∣∣∣=∣∣∣xn6(n+1)∣∣∣
limn→∞∣∣∣an+1an∣∣∣=∣∣∣x6∣∣∣limn→∞nn+1
limn→∞∣∣∣an+1an∣∣∣=∣∣∣x6∣∣∣
For convergence
∣∣∣x6∣∣∣<1−1<x6<1−6<x<6
Therefore, radius of convergence =6−(−6)2=6.