The correct option is B (3,0)
Let equation of circle be
x2+y2+2gx+2fy+c=0 ⋯(1)
The line lx+my+1=0, will touch circle if,
Length of perpendicular from centre = Radius ,
i.e, ∣∣∣−gl−mf+1√l2+m2∣∣∣=√g2+f2−c
⇒(gl+mf−1)2=(l2+m2)(g2+f2−c)
⇒(c−f2)l2+(c−g2)m2−2gl−2fm+2gflm+1=0⋯(2)
But the given relation on l,m is
4l2−5m2+6l+1=0 ⋯(3)
Comparing equations (2),(3), we get
c−f2=4,c−g2=−5,−2g=6,−2f=0,2gf=0
On solving we get,
f=0, g=−3, c=4
∴ centre (3,0)