The correct option is B 5113
Given S=7+13+21+31+....+Tn.
⇒S=7+13+21+31+....+Tn−1+Tn
⇒0=(7+6+8+10+....+nthterm)−Tn
⇒Tn=(7+6+8+10+....+nthterm)
⇒Tn=3+(4+6+8+10+....+nthterm)
Since the series (4+6+8+10+....+nthterm) is A.P.
With the first term a=4 and the common difference d=2.
Therefore, Tn=3+n2[2(4)+(n−1)2]
⇒Tn=3+n2[8+(n−1)2]
⇒Tn=3+n2[2n+6]
⇒Tn=3+n(n+3)
⇒Tn=n2+3n+3
Now, put n=70; we get
T70=(70)2+3(70)+3
⇒T70=4900+210+3
⇒T70=5113