The correct option is
D 8√mld(l−a)ε0AE2A(K−1)Capacitance of the portion with dielectrics,
C1=aKε0Ald
Capacitance of the portion without dielectrics,
C2=ε0(l−a)Ald
∴Net capacitance
C=C1+C2=ε0Ald[Ka+(l−a)]
⇒C=εAld[l+a(k−1)]
Consider the motion of dielectric in the capacitor.
Let, it further moves a distance
dx,which causes an increase of capacitance by
dC.
∴ Charge flowing,
dQ=(dC)E
The work done by the battery
dW=VdQ=E(dC)E=E2dC
Let force acting on it be
F.
∴Work done by the force during the displacement,
dW=Fdx
∴ Increase in energy stored in the capacitor
12(dC)E2=Fdx
⇒F=12E2dCdx
As,
C=ε0Ald[l+a(K−1)] (here
x=a)
⇒dCda=dda[ε0Ald{l+a(K−1)}]=ε0Ald(K−1)
Now,
F=12E2dCda=12E2[ε0Ald(K−1)]
So, the acceleration of the dielectric,
ad=Fm=E2ε0A(K−1)2ldm
If time required to move
(l−a) distance is
t then from the equation of motion,
(l−a)=12adt2
⇒t=√2(l−a)ad=√2(l−a)2ldmE2ε0A(K−1)
⇒t=√4mld(l−a)ε0AE2A(K−1)
For the complete cycle time period will be four times of the time required to move
(l−a) distance.
∴Time period
=4t=8√mld(l−a)ε0AE2A(K−1)
Hence, option (d) is the correct answer.