Consider the system of equations
x1+2x2+3x3=1
x2+2x3+3x1=2
x3+2x1+3x2=3
then
A. x1=23
B. x1+x2=43
C.x3=−13
D. x1−x2=13
For x1+2x2+3x3=1x2+2x3+3x1=2x3+2x1+3x2=3
Let M=⎡⎢⎣123312231123⎤⎥⎦
Applying R2→R2−3R1,R3→R3−2R1
M=⎡⎢⎣1230−5−70−1−51−11⎤⎥⎦
Dividing R2 by −5, we get
M=⎡⎢
⎢
⎢⎣12301750−1−51151⎤⎥
⎥
⎥⎦
Now applying R1→R1−2R2,R3→R3+R2
M=⎡⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢⎣1015017500−185257565⎤⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥⎦
Solving this we get x3=−13,x2=23,x1=23
A) x1=23
B) x1+x2=23+23=43
C) x3=−13
D) x1−x2=23−23=0
Hence, options A, B and C are correct.