The correct option is A ±5√5
xcos3y+3xcosysin2y=14 ⋯(1)
xsin3y+3xcos2ysiny=13 ⋯(2)
Adding Eqs. (1) and (2)
x(cos3y+3cos2ysiny+3cosysin2y+sin3y)=27
⇒x(cosy+siny)3=27
⇒x1/3(cosy+siny)=3 ⋯(3)
Subtracting Eq (2) from Eq (1), we get
x(cos3y+3cosysin2y−3cos2ysiny−sin3y)=1
⇒x(cosy−siny)3=1
⇒x1/3(cosy−siny)=1 ⋯(4)
Dividing Eq (3) by Eq (4), we get
cosy+siny=3cosy−3siny
⇒tany=12
Case I:
siny=1√5,cosy=2√5
Then y lies in the 1st quadrant
∴y=2nπ+α, where 0<α<π2 and sinα=1√5
From Eq.(3), we get
x1/3(3√5)=3
⇒x=5√5
Case II:
siny=−1√5,cosy=−2√5
Then y lies in the 3rd quadrant
∴y=2nπ+(π+α), where 0<α<π2 and sinα=−1√5
From Eq.(3), we get
x1/3(−3√5)=3
⇒x=−5√5