Consider the system of linear equations in x, y and z ;
(sin 3θ) x - y + z = 0 ......(i)
(cos 2θ)x + 4y + 3z = 0 ......(ii)
2x + 7y+ 7z = 0 ......(iii)
The value of θ for which the system has nontrivial solution is
θ = nπ, nπ + (-1)n (π/6), where n ϵ I.
Eliminating x, y, z from the system of linear equations(i) , (ii), (iii), then
∣∣
∣∣sin3θ−11cos2θ43277∣∣
∣∣ =0
or(28−21)sin3θ−(−7−7)cos2θ+2(−3−4)=0or,7sin3θ+14cos2θ−14=0or,sin3θ+cos2θ−2=0or,(3sinθ−4sin3θ)+2(1−2sin2θ)−2=0or4sin3θ+4sin2θ−3sinθ=0orsinθ(4sin2θ+4sinθ−3)=0orsinθ(2sinθ−1)(2sinθ+3)=0
Either sin θ = 0 or sin θ =12
or sinθ=−32 but sinθ = 0,
or sinθ=12 is possible or sinθ=−32 is not possible Now, sinθ = 0
or, θ = nπ where n ∈ I.
And sin θ =12 = sin(π6),
or, θ = nπ +(−1)nπ6, where n ∈ I.
Hence the required values of π are θ=nπ,
nπ + (−1)n(π6), where n ∈ I.