The correct option is A x=1a and y=1b
Given, (ax)loga=(by)logb−−−>1,blogx=alogy−−−>2
Applying logarithm on both sides of the above two equations,
log(ax)loga=log(by)logb
⇒loga∗(loga+logx)=logb∗(logb+logy)--->A
Similarly appling logarith on equation 2,
logblogx=logalogy
⇒logblogx=loga∗logy---->B
On substituting logy from equation B into equation A,
⇒loga.(loga+logx)=logb∗(logb+logb.logxloga)
⇒logx∗(loga−logbloga)=(logb)2−(loga)2
⇒−logxloga=1
⇒loga+logx=0
⇒logax=0
⇒ax=1
⇒x=1a--->C
on substituting C in B,
⇒logb∗log(1a)=loga∗logy
⇒logb∗(−loga)=loga∗logy
⇒−logb=logy
⇒logby=0
⇒y=1b
Option A is correct.