wiz-icon
MyQuestionIcon
MyQuestionIcon
1
You visited us 1 times! Enjoying our articles? Unlock Full Access!
Question

Consider the trigonometric equation tanx(sin2x+1)=sinx(2+tanx). The number of solution(s) of the equation in (0,4π) is

Open in App
Solution

tanx(sin2x+1)=sinx(2+tanx)
sinx[sin2x+1cosx(2+tanx)]=0
sinx=0
or sin2x+1=2cosx+sinx, cosx0
sin2xsinx+12cosx=0
sinx(2cosx1)1(2cosx1)=0
(sinx1)(2cosx1)=0
sinx=1,cosx=12

sinx=0,1; cosx=12
But sinx1
x=nπ,2nπ±π3
x=π,2π,3π,π3,2π±π3,4ππ3
i.e., a total of 7 solutions in (0,4π)

flag
Suggest Corrections
thumbs-up
0
Join BYJU'S Learning Program
similar_icon
Related Videos
thumbnail
lock
General Solutions
MATHEMATICS
Watch in App
Join BYJU'S Learning Program
CrossIcon