The correct option is
A (−2,32)Given lines are y -axis (x=0),y=2 and
x+my=l
The rough diagram will line.
⇒ point A is
y=2⇒x=l−2m⇒A(l−2n,2)
point C is x=0⇒y=lm⇒c(0,lm)
△ABC is the right angel triangle
⇒ circum centre of △ABC is mid point of AC
[mid point of hypotenuse is the circum centre]
⇒ Let mid point is P(h, k)
⇒h=0+l−2m2 & k=2+lm2
⇒2h=l−2m & 2k=2+lm...(1)
(l,m) lies on parabola y2=4x
⇒(lm)≡(t2,2t) point in parameter form.
⇒ (1)statement becomes.
2h=t2−4t & 2k=2+t22t=2+t2
from 2k=2+t2⇒4k=4+t⇒t=4k−4
putting in 2h=t2−4t
⇒2h+4=t2−4t+4
⇒2h+4=(t−2)2
(2h+4)=(4k−6)2
⇒ Equation of parabola is
2x+4=(4y−6)2
⇒42(y−32)2=2(x+2)
⇒(y−32)2=18(x−(−2))
⇒ vertex is (−2,32)