The correct option is C p≠2,q=3
A=⎡⎢⎣2p612q113⎤⎥⎦
For the planes to not have any common point of intersection.
A=0 and at least any one Ax, Ay, Az is non-zero.
Az=⎡⎢⎣2p8125114⎤⎥⎦
R1→R1−2R2 and R2→R2−R3
Az=⎡⎢⎣0p−4−2011114⎤⎥⎦
|Az|≠0
⇒p−4+2≠0
⇒p≠2
Also, |A|=0
R1→R1−2R2 and R2→R2−R3
A=⎡⎢⎣0p−46−2q01q−3113⎤⎥⎦
⇒(p−4)(q−3)−(6−2q)=0
⇒pq−3p−2q+6=0
⇒p(q−3)=2(q−3)
∵p≠2∴q−3=0
Hence, q=3