Let the equation of circle be
x2+y2+2gx+2fy+c=0 ⋯(1)
Putting the points (0,a) and (0,−a) simultaneously,
a2+2fa+c=0 ⋯(2)a2−2fa+c=0 ⋯(3)
As both the points are distinct, so, a≠0
Using equation (2) and (3), we get
c=−a2, f=0
From (1), we get
x2+y2+2gx−a2=0
Centre and radius of the circle is,
C(−g,0), r=√g2+a2
Now, the given tangent is,
y=3x+4⇒3x−y+4=0
Distance from the centre to the tangent = Radius of the circle
∣∣∣−3g+4√10∣∣∣=√g2+a2
⇒(3g−4)2=10(g2+a2)⇒g2+24g+(10a2−16)=0
Let the two roots of the equation be g1, g2.
∴g1g2=10a2−16
Now, the two circles are
x2+y2+2g1x−a2=0x2+y2+2g2x−a2=0
The circles are orthogonal if,
2g1g2+0=−a2−a2⇒g1g2=−a2
⇒10a2−16=−a2⇒a=±4√11∴k1+k2=15