Consider two lines x+3−4=y−63=z2andx−2−4=y+11=z−61. Which of the following are correct?
Lines L1=x+3−4=y−63=z2andL2=x−2−4=y+11=z−61
For coplanarity, ∣∣ ∣∣5−76−432−411∣∣ ∣∣
≠0
Hence, the lines are non-coplanar.
Let the shortest distance be d
d=∣∣ ∣∣(→a1−→a2).(→b1×→b2)|→b1×→b2|∣∣ ∣∣
→a1=−3^i+6^j;→a2=2^i−^j+6^k
→b1=−4^i+3^j+2^k;→b2=−4^i+^j+^k
d=∣∣(−5^i+7^j−6^k).(^i−4^j+8^k)∣∣|^i−4^j+8^k|=9
Unit vector perpendicular to both lines is ∣∣ ∣ ∣∣^i^j^k−432−411∣∣ ∣ ∣∣
=^i−4^j+8^k
Hence, options 'B', 'C' and 'D' are correct.