|7x−5y|=3;7x−5y=±3;
7x−35=y;(A)
7x−35=y;(B)
Case A : 7x−35=y;(A)
∴x,y→ 2-digit natural numbers ⇒10≤y≤99 and 10≤x≤99
7x = 498 ⇒ x = 71 max, integral value
7x = 53 ⇒ x = 8 min, integral value
Thus for 10≤y≤99⇒x lies between 8 and 71.
But x should lie between 10 and 99,
For that y should be greater than 12
Hence 12≤y≤99.
For y = 12; x = 9 → value not possible.
Since, 7x=5×y+3⇒x=5×y+37;
we should check next value of y at 19. [12+7 = 19].
∴ Values of y will be 19, 26, 33, ...., 96.
96=19+(n−1)×7⇒n=12→ number of values of y that satisfy the equation.
Case B : 7x−35=y;(B)
∴x,y→ 2-digit natural numbers ⇒10≤y≤99;10≤x≤99
7x = 492 ⇒ x = 70 max, integral value
7x = 47 ⇒ x = 7 min, integral value
Thus for 10≤y≤99⇒x lies between 7 and 70.
But x should lie between 10 and 99,
For that y should be greater than 15
Hence 15≤y≤99.
For y=16;x=11
Since, 7x=5×y−3⇒x=5×y−37;
we should check next value of y at 23. [16+7 = 23].
x=5×23−37=16
∴ Values of y will be 16,23,30, ...., 93.
93=16+(n−1)7⇒n=12→ number of values of y that satisfy the equation.
Total number of values = n(case A) + n(case B)=12+12=24
Total number of values of y between 10 and 99,
99=10+(n-1)1⇒ n=90
No. of values of y that satisfy equation = 24
Total no. of values = 90
Hence, no. of values that do not satisfy the equation = 99-24=66.