Construct a 3 × 2 matrix whose elements are given by aij=ei.x sin jx.
Since, A=[aij]m×n1≤i≤m and 1≤j≤n, i. j ϵN
A=[ei.xsin jx]3×2:1≤i≤3;1≤j≤2
⇒a11=e1.x.sin1.x=ex sin x
a12=e1.x,sin 2.x=ex sin2x
a21=e2.x.sin 1.x=e2x sin x
a22=e2.x.sin 2.x=e2x sin 2x
a31=e3.x.sin 1.x=e3x sin x
a32=e3.x.sin 2.x=e3x sin 2x
∴A=⎡⎢⎣ex sin x exsin2xe2x sin x e2x sin2xe3x sin x e3x sin2x⎤⎥⎦3×2